THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW4 Solution

Yan Lung Li

1. (P. 215 Q 2)
h is clearly bounded on $[0,1]$. Applying Theorem 1.8 of the lecture note 1 P.3, it suffices to show that there exists $\epsilon_{0}>0$ such that for all partition $P:=a=x_{0}<x_{1}<\ldots<x_{n}=b$ on $[0,1]$, we have

$$
U(h, P)-L(h, P) \geq \epsilon_{0}
$$

Let $\epsilon_{0}=1$, then for all partition $P:=a=x_{0}<x_{1}<\ldots<x_{n}=b$ on $[a, b]$. For each $1 \leq i \leq n$, since $\mathbb{Q} \cap[0,1]$ is dense in $[0,1]$, there exists $\left(y_{m}^{(i)}\right)_{m=1}^{\infty} \subseteq \mathbb{Q} \cap\left[x_{i-1}, x_{i}\right]$ such that $y_{m}^{(i)} \rightarrow x_{i}$ as $m \rightarrow \infty$. Since $h(x) \leq x_{i}+1$ on $\left[x_{i-1}, x_{i}\right.$] by definition, we have

$$
M_{i}(h, P)=x_{i}+1
$$

On the other hand, since $(\mathbb{R} \backslash \mathbb{Q}) \cap[0,1]$ is dense in $[0,1],(\mathbb{R} \backslash \mathbb{Q}) \cap\left[x_{i-1}, x_{i}\right] \neq \phi$, and hence $h\left(z_{i}\right)=0$ for some $z_{i} \in(\mathbb{R} \backslash \mathbb{Q}) \cap\left[x_{i-1}, x_{i}\right]$. Since $h(x) \geq 0$ on $\left[x_{i-1}, x_{i}\right]$ by definition, we have

$$
m_{i}(h, P)=0
$$

Therefore,

$$
\begin{aligned}
U(h, P)-L(h, P) & =\sum_{i=1}^{n} \omega_{i}(h, P) \Delta x_{i} \\
& =\sum_{i=1}^{n}\left(x_{i}+1\right)\left(x_{i}-x_{i-1}\right) \\
& \geq \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \\
& =x_{n}-x_{0}=1=\epsilon_{0}
\end{aligned}
$$

Therefore, h is not integrable on $[0,1]$.
2. (P. 215 Q 8)

We prove by contradiction: suppose there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right) \neq 0$, i.e. $f\left(x_{0}\right)>0$. Since f is continuous on $[a, b]$, using its continuity at x_{0} with $\epsilon=\frac{f\left(x_{0}\right)}{2}>0$, there exists $\delta>0$ such that $\forall x \in V_{\delta}\left(x_{0}\right) \cap[a, b],\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$, and hence

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)-\left(f\left(x_{0}\right)-f(x)\right) \\
& >f\left(x_{0}\right)-\epsilon \\
& =\frac{f\left(x_{0}\right)}{2}>0
\end{aligned}
$$

Now, since f is non-negative,

$$
\int_{a}^{b} f \geq \int_{[a, b] \cap V_{\delta}\left(x_{0}\right)} f
$$

and by construction, we have

$$
\begin{aligned}
\int_{[a, b] \cap V_{\delta}\left(x_{0}\right)} f & \geq \frac{f\left(x_{0}\right)}{2} \cdot\left(\text { length of }\left([a, b] \cap V_{\delta}\left(x_{0}\right)\right)\right. \\
& \geq \frac{f\left(x_{0}\right)}{2} \cdot \delta>0
\end{aligned}
$$

These imply

$$
\int_{a}^{b} f>0
$$

which contradicts to the assumption that $\int_{a}^{b} f=0$.
Therefore, $f(x)=0$ for all $x \in[a, b]$.
3. (P. 215 Q 8)

Define $h(x)=f(x)-g(x)$ on $[a, b]$, then h is continuous on $[a, b]$ (and hence Riemann integrable by Prop. 1.11 in Lecture note 1 P.5) and $\int_{a}^{b} h=\int_{a}^{b} f-\int_{a}^{b} g$ (by Prop. 1.7 of lecture note 1 P.3) $=0$.

Now we prove by contradiction: suppose on the contrary for all $c \in[a, b], f(c) \neq g(c)$, i.e. $h(c) \neq 0$. Since h is continuous on $[a, b]$, by Intermediate Value Theorem, either (i) $h(x)>0$ for all $x \in[a, b]$ or (ii) $h(x)<0$ all $x \in[a, b]$.

Case (i): applying the result of Q8 (since h is non-negative on $[a, b]$ and $\int_{a}^{b} h=0$), we must have $h(x)=0$ for all $x \in[a, b]$, which is a contradiction.

Case (ii) Let $k(x)=-h(x)$ on $[a, b]$. Then apply case (i) to $k(x)$ to derive a contradiction.
Therefore, both leads to contradiction. Hence there exists $c \in[a, b]$ such that $f(c)=g(c)$.

